Discrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
Authors
Abstract:
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiveness and wellposedness of the proposed method. In addition, the results obtained are compared with those obtained by well known Pseudospectral method, thereby confirming the superiority of our proposed scheme.
similar resources
discrete galerkin method for higher even-order integro-differential equations with variable coefficients
this paper presents discrete galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. we use the generalized jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. numerical results are presented to demonstrate the effectiven...
full textAn Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
full textan approximate method for system of nonlinear volterra integro-differential equations with variable coefficients
in this paper, we apply the differential transform (dt) method for finding approximate solution of the system of linear and nonlinear volterra integro-differential equations with variable coefficients, especially of higher order. we also obtain an error bound for the approximate solution. since, in this method the coefficients of taylor series expansion of solution is obtained by a recurrence r...
full textA Discontinuous Galerkin Method for Higher-order Differential Equations
In this paper we propose a new discontinuous finite element method for higher-order initial value problems where the finite element solution exhibits an optimal O(∆tp+1) convergence rate in the L2 norm. We further show that the p-degree discontinuous solution of differential equation of order m and its first m−1 derivatives are O(∆t2p+2−m) superconvergent at the end of each step. We also establ...
full textThe Petrov-Galerkin Method and Chebyshev Multiwavelet Basis for Solving Integro-Differential Equations
Abstract: There are some methods for solving integro-differential equations. In this work, we solve the general-order Feredholm integro-differential equations. The Petrov-Galerkin method by considering Chebyshev multiwavelet basis is used. By using the orthonormality property of basis elements in discretizing the equation, we can reduce an equation to a linear system with small dimension. For ...
full textMy Resources
Journal title
volume 3 issue 1
pages 36- 44
publication date 2015-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023